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A numerical integration package is presented for three-dimensional 
integrals occurring in electronic structure calculations, applicable to all 
polyatomic systems with periodicity in 0 (molecules), 1 (chains), 
2 (slabs), or 3 dimensions (crystals). The scheme is cellular in nature, 
based on Gaussian product formulas and it makes use of the geometri- 
cal symmetry. Convergence of accuracy with the number of points is 
rapid and use of the program has been made easy. 0 1992 Academvz 

Press, Inc. 

1. INTRODUCTION 

In many problems in physics and engineering three- 
dimensional integrals appear that cannot be solved analyti- 
cally. This may be due to particular features, such as 
singularities of the integrand, or to an awkward region. 
Numerical integration is called for in these cases, but is not 
so straightforward in three dimensions as it is in one dimen- 
sion. In this paper we discuss numerical integration in the 
calculation of the electronic structure of molecules and crys- 
tals. The integrands in this case have singularities at certain 
points in 3D space, i.e., at the sites of the nuclei. Many of the 
techniques to handle such integrands, including coordinate 
transformations and division of the integration region into 
subregions, are individually well known. However, they 
have not been merged before into one consistent scheme to 
treat automatically, with guaranteed convergence, the 
pertinent 3D electronic structure integrals, for both finite 
systems (molecules) and infinite systems (chains, slabs, 
crystals). The presented scheme originates from a method 
developed for crystals [ 11, which has been modified and 
improved in many details to enhance efficiency and 
accuracy and which has been generalized to include all 
polyatomic systems. 

It is not our purpose here to present new developments in 
the theory of numerical integration. Rather we describe and 
justify the particular choice of integration variables, sub- 
regions, and integration formulae, which together constitute 
the solution to the problem at hand. Although we deal 
exclusively with integrals for polynuclear electronic systems, 

some of the results are conceivably applicable in very 
different areas of physics. The method is exhibited in some 
detail, including technicalities that turned out to be crucial 
for the performance. 

Numerical integration has a number of advantages in 
electronic structure calculations, apart from that it provides 
a means of evaluating otherwise intractable integrals: 

(a) It is easy to apply to (in principle) all integrals, 
such as the matrix elements of the operators in the one- 
electron Schrodinger equation and various properties 
expressible as integrals involving the charge density. The 
awkward truncated expansions, different for each type of 
integral, that occur in many analytic evaluation schemes, 
can thus be avoided. Moreover, numerical integration lends 
itself naturally to efficient execution as the vectorization and 
parallellization capabilities of a computer can be exploited 
to their full potential. 

(b) As the requirement of analytic integrability is 
removed one is free in the choice of basis functions (Slater- 
type orbitals, Gaussians, plane waves, numerical atomic 
functions, . ..) and, related to this, numerical integration 
enables one unified method for electronic structure calcula- 
tions on all material systems, ranging from finite molecules 
to systems that are infinite periodic in one, two, or three 
dimensions. 

The difficulty to attain high accuracies has been a draw- 
back of 3D integration methods. It will be demonstrated 
that with our scheme it is possible to achieve arbitrarily high 
accuracy. It is fair to say, however, that very high precision 
requires many integration points. Computational efficiency 
of an analytical method (if available) may therefore be 
greater when higher accuracies (more than eight digits, say) 
are required. For hamiltonian matrix elements a relative 
accuracy of ca. 10d3 is usually adequate. 

An integration formula, or approximation A is defined by 
N points xi and weights wi, so that 

s fx) dx z A(f) = 2 f(Xi) wi. (1.1) 
i=l 
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In Gaussian-type formulas, to which class also our method 
belongs, the functionfis implicitly approximated by A as a 
finite expansion in (as a rule) polynomials over the region of 
integration. The degree (of precision) of A is d if A is exact 
for all polynomials of degree d d, and not exact for at least 
one polynomial of degree d+ 1. The practical precision 
depends then on whether the integrands of interest have 
rapidly converging expansions in polynomials. 

Although the general theory of Gaussian formulas, i.e., 
the relations between their degrees and the (minimum) 
numbers of points needed, the location of these points and 
the common zeros of systems of orthogonal polynomials, is 
fairly well developed [2-61, its practical usefulness is 
limited. 

In one dimension the problem can be considered solved 
since the points and weights of a formula of any degree for 
an interval can routinely be computed by well-established 
standard procedures. In two dimensions formulas of rather 
high degrees have been published for regular polygons 
[6-g], the square and the triangle [9, lo], the circle [ 111, 
and the surface of the unit sphere [12-151. However, the 
computation of these formulas is far from straightforward, 
and in practice one has to store the points and weights as 
fixed data in the program, thus limiting the application to 
the few available degrees. Moreover, for regions that are not 
affinely related to those mentioned, a different solution has 
to be found. In three and more dimensions the situation is 
even worse: only for a small number of special regions, like 
the n-simplex, the n-cube, and the n-sphere, a few formulas 
are known [ 111. 

Regions not belonging to one of the “standard” ones may 
be handled by either one of the following two techniques, or 
a combination of them. First the region may be split in 
subregions, 

j dx=/ dx+s dx+ --jv~dx, (1.2) 
L VI V2 

such that for each Vi a formula is known. Second we may 
invoke product formulas, writing the nD integral as a 
sequence, or product, of lower dimensional integrations. 
A 3D integral, for instance, may be written as 

j-l;;.rcx, Y, z) dx dy dz = i‘=2 g(z) dz 
ZI 

(1.3a) 

g(z) = iv*,;, Ax, Y, z) dx dr (1.3b) 
and we need a formula for the interval (zr , z2) to integrate 
g(z), and a formula for the 2D region V’(z). It depends on 
the regions in 3D and 2D space, of course, and on the 
integrand, whether such a reduction is possible and sensible. 

If the size and form of the region V’(z) do not vary 
smoothly with z, this will show up as a non-polynomial 
feature in the function g(z) and hamper the accurate evalua- 
tion of (1.3a) by Gaussian quadrature. In case the non- 
smoothness of V’(z) &curs only at a single point z=zO 
such a problem may be solved by splitting the integral (1.3a) 
in two subintegrals (cf. (1.2)) and apply suitable formulas to 
integrate g(z) separately over (zr , zO) and (z,, z2). Problems 
with product formulas and the ensuing partitioning into 
subregions are often related to the boundary functions, i.e., 
the form of the total region. 

Not only the form of the region, but also particular 
features of the integrand may necessitate the use of product 
formulas and/or a subdivision into smaller regions. In 
polyatomic systems the integrands have cusps (wave func- 
tions) or singularities (coulomb potential) at the positions 
of the nuclei. This leads to the introduction of atomic 
spheres and naturally the use of (local) spherical coor- 
dinates for the integration. The remaining interstitial region 
is partitioned by defining atomic cells (polyhedra), each 
containing thus an atomic sphere. Except in crystals, there 
remains a part of the space outside the atomic cells denotes 
as the “outer region.” This again is treated as a separate 
subregion. 

Polyatomic systems can be classified according to their 
translational symmetry: crystals (periodic in three dimen- 
sions), slabs or films (two dimensions), chains (one dimen- 
sion), and molecules (no periodicity at ,all). We thus will 
sometimes speak of n-dimensional crystals, by which we 
understand 3D systems that are periodic in n directions, 
n = 0, 1,2, 3. The Cartesian coordinate system is taken such 
that the translational symmetry is exhibited in the first n 
coordinates. 

Since we will deal exclusively with integrands that have 
the translational symmetry of the system, the integral over 
R3 can be reduced to the integration over a unit cell, which 
is bounded in the n directions of periodicity and infinite in 
the remaining (3 - n) ones. 

By systematically applying product formulas and, where 
necessary, divisions into subregions, the total integral is 
reduced to a sequence of fundamental integrals over ( 1D) 
finite intervals and/or (2D) spherical surfaces. For the inter- 
val we employ either the goniometric formula, consisting of 
equidistant points and equal weights [ 161 (if the integrand 
is periodic) or Gauss-Legendre quadrature (non-periodic 
integrands). In the latter case the points, that is the zeros of 
the appropriate Legendre polynomial, and the associated 
weights are routinely and efficiently generated for any 
desired degree. 

The spherical surface may be treated with a product 
formula, thereby reducing it to the 1D case 

j” dQf(Q) = j’, dcos 0 Jzz d#f(d, 0) (1.4) 
0 
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with a goniometric formula for the inner integral and a 
Legendre scheme for the outer one. It proves to be advan- 
tageous, however, as we will discuss later, to have a formula 
with octahedral (or icosahedral) point group symmetry. 
For this reason our package contains the data of a number 
of special formulas for the spherical surface. Some of these 
have been taken from [ 111. Those with higher precision, up 
to degree 29, are from [ 13-153. Although formulas of this 
type are thus limited in degree, this is immaterial in practice 
as higher degrees are never needed. 

In the following section we discuss the application of our 
approach to (three-dimensional) crystals, i.e., the treatment 
of the atomic spheres and the polyhedra. In Section 3 the 
outer regions (for molecules, chains, and slabs) are 
examined. Formulas that exhibit the same symmetry as the 
polynuclear system offer important advantages; in Section 4 
we deal with the symmetry property of the integration 
scheme. Finally we present results in Section 5, together 
with a discussion of efficiency and optimizations; some 
remarks on the use of the program and integration 
parameters are included. The package (in Fortran 77) is 
available on request. 

2. CRYSTALS 

The integration procedure is cellular in nature. Space is 
divided in atomic Voronoy polyhedra. The Voronoy 
polyhedron around an atom is the part of space closer to 
that atom than to any other. Computationally it may 
be defined as the region bounded by the planes that 
orthogonally bisect the line segments joining the atom with 
all other atoms. (In [ 11 it was remarked that these 
boundary planes need not necessarily be chosen halfway 
between the atoms, with the suggestion to position them 
halfway between the spheres. This is, in general, incorrect. 
According to that procedure some regions in space might 
belong to more than one atomic polyhedron at the same 
time, or to none at all.) 

Voronoy polyhedra of different atoms are by definition 
non-overlapping and the conjunction of them fills all space 
exactly. In particular, the set of polyhedra corresponding to 
the atoms in the central unit cell defines a proper unit cell, 
which can be used as the region of integration. In the case 
of one atom per unit cell the polyhedron is precisely the 
well-known Wigner-Seitz cell. 

For a particular polyhedron, the origin of the (local) 
coordinate system is chosen at the atom and an atomic 
sphere is introduced inside the polyhedron, both to isolate 
the very localized core functions and to handle adequately 
the problematic features of integrands containing a cusp 
(wavefunctions) or singularity (coulomb potential) by using 
spherical coordinates. The integration is thus separated into 
one over the sphere and one over the remaining part of the 
polyhedron. The latter is conceptually split into a sum of 

(truncated) pyramids, each having its top at the atom and 
as its base one of the faces of the polyhedron: 

Atomic Sphere 

Several special point formulas have been published for 
numerical integration over the solid sphere in three dimen- 
sions [ 111. Their maximum degree is rather limited. 
Furthermore, as far as they implicitly expand the integrand 
in Cartesian polynomials they will fail to give good results 
for cusps and the coulomb singularity at the origin. Besides, 
the radial and angular variations of the integrands may dif- 
fer appreciably in complexity. So it is sensible to separate 
the variables and use the product form 

i Sphere.f(r) dr = joR g(r) r* dr (2.2a) 

(2.2b) 

For the angular integral (2.2b) the special formulas of 
Lebedev are used, or a product formula in the standard 
spherical coordinates; the choice between these depends on 
symmetry considerations (Section 4). The radial integral 
(2.2a) is evaluated with a Legendre scheme. The Jacobian r* 
is included into the integrand, so that r*g(r), rather than 
g(r) itself, is implicitly approximated by a polynomial. In 
our case g(r) varies much more rapidly near r = 0 than near 
r = R, and it may even be divergent. The factor r2 suppresses 
the problematic behaviour of g(r), and, in particular, 
removes the l/r singularity of the coulomb potential. 

The integrands are usually matrix elements of the 
one-electron hamiltonian in the basis of some set of atomic 
functions. Due to the presence of both steep core functions 
and relatively smooth valence functions, a large variation in 
radial behaviour exists among these integrands. Roughly 
speaking we are faced with the problem to integrate a set of 
functions of the form r”e ~” with very different values for the 
decay parameters CI and the polynomial exponents n. In 
these cases it is much more efficient to make a logarithmic 
subdivision of the interval in two (three, four) smaller inter- 
vals and to generate N-point formulas for each of them, 
than to use one 2N (3N, 4N)-point formula for the whole 
interval. A typical partitioning of the unit interval (0, 1) 
would for instance be (0, 0.04) (0.04, 0.2), (0.2, 1). In 
molecular and solid state calculations with light atoms a 
subdivision in two radial intervals gives good results. For 
heavier atoms with steeper core functions, Z > 25 say, three 
intervals are advisable, and the very heavy elements are best 
treated with four. 
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In this case a division in subregions is thus dictated by 
peculiarities of the integrands, rather than by the form of the 
region of integration. 

Pyramids of the Voronoy Polyhedra 

For the pyramids a threefold product formula is used. 
Three parameters u, V, w are defined to map the truncated 
pyramid onto the unit cube (0, 1) x (0, 1) x (0, 1). u and v 
parametrize the base as well as the spherical surface cut out 
by the pyramid; they define points Q(u, v) and P(u, u) on 
these regions. The third parameter w parametrizes the 
connection line PQ. 

The base is a polygon and may have any number of 
vertices. Product formulas for quadrangles and triangles are 
easily written down. To treat a general polygon with more 
than four vertices we repeatedly split off a quadrangle 
(Fig. 1) and deal with that part until a quadrangle or tri- 
angle remains (depending on the total number of polygonal 
vertices being even or odd). So a final further splitting in 
subregions is performed, writing the pyramid as a sum of 
pyramids with each a quadrangular (or triangular) base. 

(a) Quadrangular base. The base is parametrized by 
u and v, such that a general point Q of the base is 

Q(u,u)=(l-u)(l-v)A+u(l-v)B+uvC+(l-u)uD. 

(2.3) 

A, B, C, and D are the vertices of the base. The parametriza- 
tion defines a (bilinear) map from a general quadrangle to 
the unit square, which can then be treated with a product 
formula (in u and u). 

To deal with the appropriate part of the spherical surface 
we first introduce two auxiliary angular coordinates, in the 
following way (Fig. 2). Let S, be the common line of the 
planes ABO and CDO, and S, the common line of ADO and 
CBO; 0 is the top of the pyramid; c( is the angle between S, 
and S,. Choose the Cartesian coordinate system such that 
S, and S2 are in the xy-plane, and S, is the x-axis. Consider 
the set of half planes through S, and define coordinate 4, as 

FIG. 1. A general polygon P, P,, split into a quadrangle P, P, 
and a remaining (n - 2)-gon P, , P,, P, '. P,. 

FIG. 2. Truncated pyramid with quadrangular base ABCD. 

the angle of such a plane with the z-axis, such that the half 
plane containing the positive x-axis has b1 = n/2 and the 
plane containing the negative x-axis has d1 = -n/2. & is 
similarly defined for the set of half planes through SZ. 

The spherical surface inside the pyramid is a rectangle in 
the di, &-coordinates. The relations between (4,, &) and 
the Cartesian coordinates (x, y, z) for points on the unit 
sphere with radius R are 

x = z (tg ff$ + tg $4* cos G1) 
sin cx 

y=ztg42 
z=J(R*-x2- y’) 

(2.4) 

Turning back to the parameters u and v, we define them to 
parametrize the intervals for 4i and ti2, 

dl(“)=il,rnax + U(dl,min-41,max) 

42(u) = d2,max +442,mi" -4%,max). 
(2.5) 

The signs and orderings have been chosen to let the 
parametrizations of the base and the sphere respectively 
correspond in orientation. A point P(u, u) on the sphere is 
thus given by (2.4) with b1 and d2 depending on u and u 
via (2.5). 

The third parameter w describes the line segment PQ 
from the sphere to the base, and for a general point in the 
region of integration we have 

X(u, u, w) = P(u, v) + w(Q(u, u) - P(u, v)). (2.6) 
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The integration operator is then written as 

The jacobian J(u, v, w) of the transformation is determined 
by the partial derivatives ax/au etc., 

ax/aW = Q(u, 0) - P(u, V) 

ax/au, v = (1 - W) am qa24, v + waQ(u, qau, v. 
(2.8) 

From (2.3) 

aQ/au=(l-v)(B-A)+v(C-D) 

aQ/av = (1 - u)(D - A) + u(C - B). 

I 

FIG. 3. Truncated pyramid with triangular base ABC: A on the z-axis, 

(2.9) 
B in the xz-plane. 

For the derivatives of P define For the parametrization of the spherical surface choose the 
z-axis along OA and B in the xz-plane. Let d and 8 be the 

tgh+tghcos@ 1 usual spherical coordinates, q&,,, the e-direction of plane 
a= 

sin c1 ’ 
b= 

l/cos’ & + a2 
OAC, tI,,,(q5) the &value of the common line of plane OBC, 

(2.10) and the halfplane defined by 4; u and v parametrize this as 

Then we obtain from (2.4) and (2.5) 

ap,/au= d, P, 
ab A general point X in the interior of the pyramid is 

sin u cos2 4 I 

and 

ap,jau= sin ,d~62 ~, (ab- ‘) 

X(u, u, w) = P(u, v) + w(Q(u, u) - P(u, v)), (2.15) 
(2.11) 

where P is a point on the spherical surface. The partial 

4 Pz derivatives entering the jacobian are then 
ap,/au= . 

sm CI cos2 f$, ab tg d2 
ax/aw=~(u,~)-~(~, 0) 

(2.16) 
axlau,u=(i -w)a~/au, V+W aQ/au, u 

awu = d,p, (~0s a 02 h + tg 42) sin2cl Eos2 d 1 

ap,/av= a ap,/au-pz 
d, cos CI 

cos2 fj2 sin c( 

4 

with 

aQ/au= -A+(l-v)B+uC=B-A+v(C-B) 
(2.12) (2.17) 

aQ/au=u(~- B) 

ap,/av = tg 42 ap,/av - P= ~ cos* lp*’ 
and 

a&/au = e,,, R COS e COS (d 

For each integration point X(u,, uI, wk) the partial 
derivatives of its components x, y, z with respect to u, v, w 
are easily evaluated and the determinant of the 3 x 3 matrix, 
i.e., the jacobian, is then computed straightforwardly. 

ap,lau = e,,, R cos 8 sin fp 

ap,/au= -e,,,R sin 8 

(2.18) 

(b) Triangular base. This case is analoguous to the 
and 

previous one. A, B, and C are the vertices (Fig. 3). dP,/du = R( -q&,, sin 8 sin 4 + cos 8 cos 4 u at?,,,/&) 
Parametrize the triangle by u and v as ap,iau = w,,, sin 8 cos 4 + cos 8 sin 4 u ae,,,latq 

Q(u,v)=(l-u)A+u(l -v)B+uuC(2.14). (2.13) ap,/av= -Rsineuae,,,/av. (2.19) 
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To evaluate dB,,,/au consider the spherical triangle cut out 
by the pyramid, with vertices A’, B’, and C’. Let c1 be the arc 
A’B’ and fl the spherical angle A’B’C’, which is equal to the 
angle between the planes OA’B’ and OB’C’. Then, from 
spherical geometry we have the relation 

Qmax=tg-1 
( 

sin CI sin p 
cos CI sin b cos d + cos fi sin 4 > ’ 

(2.20) 

Hence, 

(2.21) 

We conclude the treatment of the truncated pyramids 
with a few remarks. The present way to generate a product 
formula, i.e., the specific coordinate transformations 
(parametrizations) chosen, is by no means the only one 
possible. It has been selected after extensive experimenta- 
tion with a variety of other transformations. The most 
straightforward alternatives are (referring for concreteness 
to the quadrangular case) 

1. Use the auxiliary coordinates 4, and & (2.4) to 
integrate over the spherical surface. One may 
then apply the classical radial coordinate for the 
outward integration to the base 

I dT= dQ r’dr 
truncated I s 
pyramid 

= jj ddl dti2 J(h, d2) j r2 dr. (2.22) 

This is the method presented in [ 11. 
2. Start with a Cartesian integration over the base, 

with the discussed parametrization for the 
quadrangle. For each base point obtained in 
this manner one may integrate radially inward 
towards the sphere. This procedure was 
proposed in [ 1 ] for truncated pyramids with a 
triangular base. It has also been applied to the 
quadrangular case [ 171. 

Both schemes have disadvantages that become pronounced 
in extreme geometries, that is, for pyramids with a large 
solid angle. Using a 2D analogue this can be understood as 
follows: Scheme 1 gives the integration in the usual polar 
coordinates (r, 4) (see Fig. 4a, where we put the lower 
bound of the angular interval d1 = 0 for convenience) 

s s 
~O/COSd 

I, = ” dd f(r, 4)r dr. (2.23) 
41 R 

Integrating, for instance, the area (f= l), one obtains for 
the &integration the integrand l/cos2 4, which is singular 

( U,=O 
c 

X 

r=x 0 

(4 @I 

FIG. 4. Two methods for the distribution of integration points: 
(a) normal distribution on the “sphere”; (b) normal distribution on the 
base. 

for 4 -+ 7~12. In scheme 2 one uses, instead of 4, the coor- 
dinate u = x0 tg 4 which parametrizes the base line x=x0 
(see Fig. 4b): 

r dr. (2.24) 

With the second scheme the integration of the area con- 
verges rapidly but it breaks down for spherical harmonics 
(i.e., the functions e-ar cos(n4) in the 2D case). This can be 
analyzed by considering the behaviour of the occurring 
integrands on the large intervals (ul, u2) that result when 
fj + n/2. 

The basic flaws of schemes 1 and 2 can also be under- 
stood intuitively by considering the integration grids. The 
integrations over the radial coordinate r are analoguous 
and do not present a problem. For the “angular” (& or u-) 
integrations we consider the distribution of mesh points on 
the lower (r = R) and upper (x=x0) boundaries. Using 
Gauss-Legendre integration in 4 and u respectively, the first 
scheme generates a normal distribution over the first 
boundary but clusters the points too much in the region 
near 0 = 0 on the second boundary (Fig. 4a). The other 
scheme on the contrary concentrates the points too much 
near u= u2 on the first boundary. Accordingly functions 
that vary predominantly in the region near r = R will be 
integrated better with scheme 1, while method 2 should be 
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used when the function is characterized mainly by its 
behaviour near x = x0. 

One might say that the first method is best for “atomic” 
one-center functions located on the (local) origin, while the 
other is suitable for (tails of) “atomic” functions on another 
site, plane waves, and so on. Extensive experimentation has 
shown that the problems of either scheme become severe for 
wide angles & > 80”. 

Our approach can be interpreted as a hybrid, distributing 
the points correctly over both boundaries and connecting 
the corresponding points. The “radial” integration lines, 
when extended, do not pass through the origin then, in 
contrast with the two methods above; this is not relevant, 
however. Our findings are that, on the average, the hybrid 
scheme gives superior results. 

3. SLABS, CHAINS, AND MOLECULES 

For systems with periodicity in n < 3 directions, like a 
slab with translational symmetry in the xy-plane, or a 
molecule, we wish to apply basically the same method as for 
3D crystals. For the atoms in the interior of the system this 
is straightforward. Their polyhedra are defined by the 
planes between the atom under consideration and the 
surrounding nuclei. For an atom at the outside, however, 
the polyhedron, defined in this way, is not bounded. 

This is solved by the introduction of a set of boundary 
planes encompassing all atoms. For a slab, for instance, we 
use two boundary planes, parallel to the xy-plane, one 
above the slab and one underneath. In the construction of 
all atomic polyhedra these boundary planes are also taken 
into account, together with the usual orthogonally bisecting 
planes. This yields a set of non-overlapping atomic 
polyhedra that completely till the region enclosed by the 
boundary planes. The integration over this inner region is 
performed as described in the previous section. What 
remains is the part outside the boundary planes. The 
integration over this outer region is the main subject of this 
section. Although the outer region does in principle extend 
to infinity, this is not so in practice. All functions and 
integrands fall off more or less rapidly far away from the 
atoms. At a distance R,, say, they have become negligible 
and the region of integration can be limited accordingly. 

The outer region is different for 2D periodic systems 
(slabs), 1D periodic systems (chains), and nonperiodic 
systems (molecules). We will treat these cases separately 
because the technical details differ substantially. The 
principle is nevertheless the same for all of them. A set of 
boundary planes is defined around the atoms, a distance 
R, is determined as the outward limit of the outer region, 
and a formula is constructed for this empty space, where no 
atoms are located, but where the contribution to the various 
integrals is still significant. 

Slabs 

The system is periodic in the xy-plane. Let all atoms be 
contained between z,, and z i , i.e., z0 and z I are the minimum 
and maximum z-values of the atomic positions. Choose a 
distance d for the boundaries, so that the two boundary 
planes parallel to the xy-plane have z-values (zO - d) and 
(z, + d), respectively; d is of the order of the nearest 
neighbour distance in the system, a few atomic units. The 
integration over the “outside” region between z = z1 + d 
and z=z, + R, (and similarly between z=z,-d and 
z = zO- R,) is easy. Due to the absence of nuclei a 
straightforward product formula can be applied: 

/outridef(r) dr = ju,,,,, dx dy dx, Y) (3.14 
in xv-plane 

Ax, Y) = jjl’-;= dzf(x, y, z). (3.lb) 

For (3.1 b) Legendre integration is used. Experiments with 
Gauss-Laguerre, and Gauss-Hermite integration, taking 
R, = cc and using various values for the exponential decay 
constants that underly such integration formulas, produced 
inferior results. This is probably due to the large variation in 
the exponential decay constants of the actual integrands. 
For the same reason it is advisable in the Legendre integra- 
tion to subdivide the interval (zi + d, z1 + R,) into two or 
three subintervals (in a logarithmic way, as we did for the 
atomic spheres). This is more efficient, presumably because 
some functions, which are rather (but not too) localized 
around atoms, may have significant tails extending over a 
relatively short distance into the outer region. There they 
behave as very localized functions, analogous to the core 
functions in the atomic spheres, and a high number of 
“outward” integration points would be needed to achieve 
accurate results if the subdivision were not applied. 

For (3.la) the standard technique for periodic functions 
is used: goniometric integration with equidistant points 
(and equal weights) along the lattice vectors that describe 
the translational symmetry in the xy-plane. Note that the 
implicit choice of the form of the unit cell here is different 
from that employed for the integration inside the slab, 
between the boundary planes. 

Chains 

Let the unit cell extend from x0 to x1 along the direction 
of translational symmetry. Again it is in principle infinite in 
y and z, but “infinity” may be located at some distance R, 
from the chain. We distinguish two situations, according to 
the presence or absence of infinite rotational symmetry 
around the x-axis. This particular symmetry occurs when 
all atoms have the same y-coordinates and the same 
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z-coordinates, say zero. We denote these systems as linear 
and non-linear chains respectively. 

X 

(a) Linear Chains. As a consequence of the con- 
tinuous rotational symmetry the natural approach is to use 
cylindrical coordinates; the boundary planes are cylindrical 
surfaces, and the integration formulas are products of the 
angular integration around the axis, and a 2D integral. So 
there are no 3D atomic polyhedra, but (truncated) triangles 
in the 2D region. In this particular case the integration in 
the interior region is different from all other cases. We there- 
fore treat here the integration in both the interior and the 
outer regions. Let d be the angle of rotation around the 
x-axis; then, in cylindrical coordinates, 

(3.2a) 

g(x, PI = ji’ &f(x, P ~0s 4, P sin 4); (3.2b) 

(3.2b) is integrated with equidistant points. This angular 
integral does not present any problem, irrespective of x and 
p, since all nuclei have p = 0. The difficulties associated 
with the positions of the nuclei appear only in the 2D 
integral (3.2a). 

The 2D region is divided into atomic regions Z (half cir- 
cles), an interstitial part ZZ, and the outer region ZZZ (Fig. 5). 

I. The integration for the atomic circles is performed by a 
product rule in polar coordinates, where for each atom the 
(local) origin of the coordinate system is the center of the 
circle: 

= s’ 1 4cos 0) joR r2 dr g(r, 0). (3.3) 

Combining this with (3.2b) we find that in fact a three fold 
product formula is employed for the atomic sphere. 

ZZ. Considering the integration in the interstitial region ZZ 
in the xy-plane, we note that all interatomic “planes” are 
lines parallel to the p-axis, between the atomic spheres. The 
boundary plane is a line parallel to the x-axis. Region ZZ is 
the 2D analogue of the truncated polyhedron of the 
previous section. 

We make a division in truncated triangles II”, ZZb, and II” 
(2D pyramids) (Fig. 5). Product formulas for each of them 
(from (3.3)) are derived from a parametrization in analogy 
with that for 3D pyramids. We will work this out for II”, the 
other two being similar. Let u parametrize both the angular 
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FIG. 5. Two-dimenstional region of integration for linear chains, 
divided into the atomic spheres (I), the interatomic region (II), and the 
outer region (III). 

d-interval (0, 0,) and the p-interval (0, pb); R is the radius of 
the circle; tg(8,) = ph/xb. Then define 

P,(U) = R COS (ue,) 

P,(U) = R sin(&),) 

and 

Qx(u) = xb 

Q,(u) = uPb; 

v is the second parameter, defining a general point 

(3.4) 

(3.5) 

X(u, v) = P(u) + v(Q(u) - P(u)). (3.6) 

In (u, o) the region is the unit square, so that a product 
formula is applicable. The jacobian J(u, v) from the partial 
derivatives is straightforward. 

ZZZ. For the outer region (III) the approach is like that for 
the slab: an equidistant integration in x times a Legendre 
integration in p; the latter is again preferably subdivided in 
two or three subintervals. 

(b) Non-linear chains. In contrast with the linear 
chains, the non-linear chains present a fully 3D problem. 
The boundaries are planes, parallel to the x-axis, enclosing 
the system in a prism. The polygonal projection of this 
prism onto the yz-plane is defined as follows: Project all 
atoms onto the yz-plane and determine the smallest convex 
polygon enclosing all the resulting points, the minimal 
polygon. The requirement that the polygon be convex 
implies that some of the projection points are “inner” points 
and these are discarded; the “outer” points are the corners 

581,99,1-7 
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of the polygon and its sides represent a set of planes. Each 
of them is shifted a distance d outwards in the direction 
perpendicular to the plane itself. The resulting planes are the 
required boundary planes; d is a few atomic units. 

Inside the boundary we have the familiar atomic 
polyhedra. The integral over the region outside the prismal 
envelope of the chain is performed by a product of a 1D 
periodic integration in X, by a goniometric formula, times a 
2D integration in y and z. 

The First hull, defined above, is a polygon in the yz-plane, 
the sides of which are characterized by a distance d from the 
outermost atoms. Let R, be the distance where all func- 
tions have become negligible and set an outer hull by 
shifting all sides of the inner one outwards over a distance 
(R, -d). The region of integration between these two 
polygons is now in a natural way divided into trapezia. The 
parallel sides of each trapezium are the corresponding sides 
of the inner and the outer polygon, respectively, and the 
four vertices are the intersections with the appropriate 
neighbouring sides. The integral over a trapezium is easily 
written in product form. 

Molecules 

The minimal convex hull is a polyhedron. The planes 
describing it are obtained by the following procedure. For 
each distinct triplet of atoms that are not on one line, 
consider the plane through them. If all atoms lie at one side 
of it, or in it, it is a boundary plane; otherwise it is rejected. 

Like in the other situations already discussed, the integra- 
tion outside the inner hull of a molecule is not performed 
over all space, but an outermost hull is defined, consisting 
of the same planes as the inner one, all shifted over R, - d. 
The integration between the inner and the outer hull is 
written in product form: a 1D outward integral over the 
distance z from the inner hull, ranging from zero to 
R, - d, times a 2D integration over the polyhedral surface 
corresponding to the current distance value, 

c drf(r)= [‘zpddzg(~); (3.7) 
J region JO 

g(z), the integral over the polyhedral surface at distance z 
from the inner polyhedron, is split into a sum over the 
respective faces, each being some polygon, and for every 
polygon a formula is generated by splitting it into 
quadrangles (and possibly a triangle) as discussed above: 

(3.8) 

The r.h.s. of (3.7) is evaluated by Legendre integration. 

FIG. 6. The minimal convex polygon and the auxiliary planes; some of 
the auxiliary planes are redundant (see text). 

Auxiliary Boundary Planes 

The eveloping prism of the non-linear chain may have 
sharp angles at some of its edges. Similarly, sharp angles 
may occur at edges of the enveloping polyhedron of a 
molecule, as well as sharp points at its vertices. Such 
features are undesirable. In extreme cases one might 
imagine almost “degenerate” points and edges protruding 
to infinity. These will undoubtedly cause accuracy problems 
in the integration scheme, since the jacobian of the transfor- 
mation from the ensuing pyramids to the unit cube even- 
tually becomes singular. Therefore we introduce additional 
planes that cut off the sharp points and edges. This solution 
is automated by defining auxiliary boundary planes, one for 
each edge and (for a molecular polyhedron) also one for 
each vertex of the original hull. These are positioned at such 
a distance from the nearest atoms that the extreme features 
are indeed removed, while they do not change the hull when 
the corresponding edge or vertex is not so sharp. We do not 
go into the algorithmic technicalities here, but give in Fig. 6 
a 2D exemplary polygonal hull with additional planes, some 
of which cut off a point and thus introduce an extra side of 
the polygon, while others turn out to be redundant. 

4. SYMMETRY 

The subject of this section is the aspects in the construc- 
tion of the integration formulas that assure that they are 
symmetric. An integration formula is symmetric when it is 
mapped onto itself by each of the operators of the symmetry 
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group. The generator points, or generators, are any subset of 
the points of the formula that are not related to each other 
by symmetry and that yield all the other points by applica- 
tion of the symmetry operators. 

The symmetry property of a formula offers various 
advantages, the most important of which in this context 
is the following: Assuming that the integrands can be 
organized such that they transform as the irreducible 
representations of the symmetry group, then the integration 
of all non-symmetric integrands is zero (analytically as well 
as numerically) and the numerical approximation of a 
symmetric integral can be evaluated by running over the 
generator points only. Obviously this may yield an 
appreciable saving in computer time, especially for systems 
with high symmetry, where the number of generators is only 
a small fraction of the total number of points. 

The presented integration method has been implemented 
in our density-functional molecular (c.q. cluster-) program 
as well as in our density-functional bandstructure program. 
Both make use of symmetry in the numerical integration. 
While, of course, the advantage depends on the amount of 
symmetry present, it is reasonable to state that the disregard 
of symmetry would in many cases increase the cost of the 
calculations by one to two orders of magnitude. Clearly it is 
of utmost importance that the integration formulas be 
symmetric, even when this would imply a slight increase in 
the number of points compared to a non-symmetric formula 
with the same precision. 

We will now demonstrate how symmetry is imposed on 
the formulas for each of the regions occurring in our 
method. In some cases a symmetric formula is constructed 
directly; in others a formula is generated for the symmetry 
unique subregion, the irreducible wedge, and the related 
points can be found by operation with all the symmetry 
operators. 

The symmetry operators themselves are computed from 
the geometric data: the n lattice vectors for the n-dimen- 
sional crystal, the positions of the atoms, and their nuclear 
charges (to impose inequivalencies between the atoms 
which may not follow from their positions alone). The algo- 
rithm used for the calculation of the symmetry operators 
will not be discussed here; the software is incorporated in 
the integration package. 

Polyhedra 

As explained in Section 2 the integration over the 
polyhedra consists of a sum over the pyramids associated 
with their faces. By checking the set of symmetry operators 
of the system the symmetry unique pyramids are found in the 
polyhedra around the symmetry unique atoms, For each of 
these pyramids we need a symmetric formula for its base, 
since the radial integral from the base towards the atomic 
sphere has no bearing on the symmetry. The irreducible 

wedge of the base is constructed by selecting the symmetry 
unique edges of the polygon (and halving them when a 
particular reflection operator indicates such). We obtain a 
polygon, again, which then defines the pyramid for which a 
formula actually is computed. 

Spheres 

The radial integral is irrelevant as regards the symmetry, 
so here we are concerned only with integration over a 
spherical surface. The subgroup of the symmetry group of 
the system that leaves a particular atom invariant is a point 
group, the local group of that atom. The operators of this 
group are selected, analysed, and the group is classified as 
either octahedral, whenever it is a subgroup of U,, or 
icosahedral, or axial. A formula of the correct symmetry 
type is then chosen. Of course this is done only for a set of 
symmetry unique atoms. 

Outer Region 

For 0-, l-, and 2D crystals the regions outside the 
boundary planes have to be treated. For all of them, the 
outward, or radial, integration is again unimportant here, 
so we discuss formulas for the boundary planes themselves. 

The boundary planes of a molecule define a polyhedron. 
Symmetric formulas for that polyhedron are similar to those 
for the atomic polyhedra and here again only the symmetry 
unique faces have to be considered. Each of them is a 
polygon. The irreducible wedge is determined, which is also 
a polygon. The irreducible wedge is determined, which is 
also a polygon (see above), and a formula for it is generated. 

For a slab the (planar) region of integration is a 2D unit 
cell. We take for it the parallelogram spanned by the lattice 
vectors a, and a,. Since the integrands may be assumed 
periodic, a general integration scheme has all weights equal 
and has points 

k I 
x,,=x,+-aa,+-a,, 

N, N, 
k,l= . . . . -l,O, 1, 2, . . . . (4.1) 

The points inside one unit parallellogram are those with N, 
consecutive values for k, and N, for 1, e.g., k = 0.. . N, - 1, 
l=O...N,- 1. 

To investigate the symmetry property of set (4.1) in rela- 
tion to the values of x0, N, , and N,, we have to consider 
symmetry equivalencies between points. Since the set (4.1) 
has the periodicity of the lattice, it is sufficient to consider 
(only) the generating operators {ti; Ri}i, l,n of the planar 
space group. Combined with all Bravais translations they 
generate all operators of the complete group. Each {t; R} is 
an affine transformation 

x’={t;R}x=t+(Rx), (4.2) 
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t is a non-primitive translation, and R is a linear orthogonal 
transformation. Furthermore, R maps the Bravais lattice 

Next consider x0 itself. The image under some {t; R} is 

onto itself. x0,= {t; R} x,,. (4.7) 

Rai = c m,,ai, (4.3) For a general point x0 the difference vector di= xoi- x0 
does not necessarily have a rational expansion in the lattice 
vectors a, and a2, i.e., it need not be of the form 

with integer matrix m. The set of generating operators is 
minimal in the sense that no two of them are related by a 
simple Bravais translation. 

Denote by C(x) the set of all distinct points that are sym- 
metry equivalent with x and located in some chosen central 
unit cell. The number of points C,E C(x) is M(x). For a 

Hence x0 cannot be chosen at random. Let us now take 

general point x M(x) will equal n, the number of generating 
some arbitrary point x, determine the associated set C(x), 
and set x0 equal to its geometric mean, in accordance with 

operators. M(x) may be lower, however, when x is located 
in a reflection plane or on some other symmetry element. 

proposition (b); then 

It is easily demonstrated that the symmetry requirement 
for set (4.1) implies xoi= {t; R} x0= {t; R} j&-j T’Cj 

(a) as a rule N, = N2( = N, say) 

(b) a safe choice for x0 is the geometric mean of a set (4.9) 

C(x) as defined above, 

where x may be any point. 

(c) a good choice for x0 is obtained with procedure T’ 
(b) but with x as a high-symmetry point. c,.+Tj.)=x,+- 

M(x)’ 
(4.10) 

(d ) N( = N, = N2) is (usually) an integer multiple of 
M(x), the number of points in set C(x). To assure (4.10) to be of the form (4.1) it is sufficient to set 

This is shown as follows: Obviously it is necessary that all N equal to an integer multiple of M(x). This confirms points 

images of x0 are elements of (4.1). Assuming for the moment (b) and (d). 

this to be the case, The different T’ resulting from the various operators 
( {t; R} may together constitute a set of vectors that renders 

(t;R} x,=x,+$a, +$a2; 
the restriction on N even less severe. For instance we might 
find, on closer inspection of the T’, that it is allowed to take 

I 2 N a multiple of M(x)/2. In our code this aspect is treated by 

then 
analysis of all T’ as rational expansions in the lattice vectors. 

Assertion (c) follows from the consideration that the 

ko lo k 1 
higher M(x) is, the more restrictive is condition (d ). We do 

{t;R}x,,=xo+~a,+~a2+~Ra,+~Ra2 not wish to be compelled to a high number of integration 
1 2 1 2 points only on grounds of symmetry. M(x) is low if x is a 

point of high symmetry. 
A simple, practical way to have a small set C(x) is to take 

for the ci the locations of the smallest set of symmetry equiv- 

(4.6) 
alent atoms in the unit cell. A good, general alternative is a 
two-step process. Take any point x,, determine the set 
C(x,), and define the associated geometric mean as x, to 

In general this is of the form (4.1) only if N, = N2, proving start the usual procedure. The first step is then just a way to 
assertion (a). Of course exceptions may occur for some sym- find a high symmetry point x. 
metry groups, i.e., when all matrices rnq have special forms. The above analysis is in no way restricted to two dimen- 
For simplicity we take N, = N, = N from now on. sions. With obvious adaptations in the references to set (4.1) 

{t; R} permutes the cj, but possibly with Bravais transla- 
tions added: 
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it is generaly applicable. To the 1D case, as regards 
the direction of periodicity, in three dimensions, if a 
goniometric, symmetric scheme is needed for a crystal unit 
cell. 

For the boundary planes of a 1D crystal we have in the 
direction of periodicity, along the x-axis, a similar situation 
as for the 2D crystal: the equidistant points must constitute 
a symmetric set with respect to all operators of the space 
group. We proceed in the way described above to determine 
x0 and N. For linear chains this is all we have to do, since 
symmetry considerations are irrelevant for the outward 
integration away from the x-axis. 

For non-linear chains the boundary consists of a set of 
rectangles parallel to the x-axis. The integration formula for 
such a rectangle is a product of equidistant points in the 
x-direction, dealt with above, and Legendre points in the 
perpendicular direction. The latter are automatically sym- 
metric with respect to possibly present reflection planes con- 
taining the axis, and C,-operators with the axis orthogonal 
to the x-axis; these are the only relevant symmetry 
operators. Naturally only the symmetry unique boundary 
planes are considered. 

5. USE OF THE PROGRAM AND RESULTS 

For a given crystal or molecule the global structure of the 
integration formula is determined by the geometry of the 
system, as discussed in the previous sections. The actual 
realization, that is, the number of points and the precision 
of the generated formula, depends on various parameters. 
Usually one is not interested in parameters, however, but 
rather in the total number of integration points and in the 
accuracy of the numerical integrations that have to be done 
with them. Therefore the program is organized such that the 
user has to input only the atomic positions and the required 
accuracy in the form of an accuracy parameter A. A 
corresponds to an accuracy 10 pA, so A is the number of 
significant digits of the numerical integrals. The program 
minimizes the numbers of points in the various subregions 
and checks the accuracy by integrating a set of test functions 
that are typical for electronic structure calculations: 
standard sets of exponential functions of the form 
r”e - ” Y,,JQ) (and more-center products of them). 

Of course, the precision defined in this way may not 
correspond to the intended application of the integration 
scheme. To provide for this the user can adapt the scheme 
by specifying different “accuracies” for the different main 
subregions (atomic spheres, atomic polyhedra, outer 
region); without instructions to the contrary the program 
sets all these accuracies at the same level. Some more techni- 
cal parameters, such as the radii of the atomic spheres and 
the distances between the outermost atoms and the bound- 
ary planes, are automatically computed by the program 
from geometrical aspects (for instance, the distance to the 

nearest atom to determine the size of an atomic sphere). It 
has been made possible, however, to overrule the default 
determination and explicitly input such values; this may 
occasionally be useful for purposes of testing and analysis of 
possibly occurring (integration) problems. 

Results 

To illustrate the performance of the integration method a 
few data are presented for molecules. The results in crystals 
are similar. As integrands are chosen the diagonal elements 
of the overlap matrix of symmetry adapted combinations 
of Slater type basis functions Y,(Q) r”ec”‘, normalized 
analytically, so that the error is equal to the deviation of the 
numerical integral from unity. The function sets contain s, p, 
and d functions with varying exponential decay constants. 
The r.m.s. error over all functions is used for each entry in 
Table I and the only input parameter was the general 
accuracy parameter A. 

The following 10 molecules have been selected to test the 
performance of the integration: 

1. cu,,, a regular linear chain of 11 Cu atoms. The 
symmetry group is D,,. 

2. C,H,, a regular pentagon. Symmetry D,,,. 

3. Cu,CO, a CO molecule adsorbed at the central 
top position on a Cu, cluster. The cluster is planar: a regular 
hexagon with a central atom. Symmetry C,, . 

4. SiFCl,, a Si atom with an approximately 
tetrahedral coordination. Symmetry C,,. 

5. Oxalic acid, (CO OH),. The molecule is planar. 
Symmetry C,, . 

6. Oxalic acid with two water molecules; the water 
molecules stick out of the plane. Symmetry Ci. 

7. [Zr(C,H,),], (PH,),. Two Zr atoms bridged by 
two PH, groups. Each of the Zr atoms is coordinated by 
two C,H, rings, and the bonds with the two rings and those 
with the PH, groups form roughly a tetrahedral system. 
Symmetry C,, 

8. 4-amino-4’-nitro-stilbene, NO*-C,H,-C2H,- 
C,H,-NH,. The molecule is planar with C, symmetry. 

9. Dimaprit ([S- [3-(N,N-dimethylamino)propyl] 
isothiourea]), NH2-NH-C-S-(CH,),-N-(CH,),. No sym- 
metry. 

10. Pd,H,, an octahedral Pd,-cluster with two 
hydrogen atoms inside. Symmetry D,,. 

Table I shows the number of points M (in the irreducible 
wedge) and the r.m.s. error E for several values of the 
accuracy parameter A. Figures 7 and 8 present the same 
data graphically. In Fig. 7 the errors are plotted as a func- 
tion of A; we infer that the accuracy tests, used internally by 
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TABLE I 

The Number of Points M and the r.m.s. Error E for Several Values of A, the Accuracy Parameter 

A Mol. 1 Mol. 2 Mol. 3 Mol. 4 Mol. 5 Mol. 6 Mol. 7 Mol. 8 Mol. 9 Mol. 10 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

5.0 

6.0 

670 326 963 1063 
3.6e-3 9.9e-3 1.7e-2 1.2e-2 

802 535 1409 1444 
9.8e-4 2.0e-3 3.2e-3 3.9e-3 

912 884 2071 2239 
3 k-4 9.4e-4 1.5e-3 1.5e-3 
1124 1183 2810 3048 

8.9e-5 2.2e-4 5.8e-4 6.2e-4 
1309 1736 3910 4393 

6.7e-5 5.2e-5 3.9e-4 2.0e-4 
1539 2226 4890 5594 

1.3e-5 1.2e-5 5.5e-5 1 Se-4 
2017 3694 7835 9093 
1.4e-6 8.5e-7 6.3e-6 1.6e-5 
2544 5732 11894 13735 
1.8e-7 9.7e-8 9.9e-6 l.le-6 

1471 6366 7827 
2.2e-2 1.2e-2 6.8e-3 

2398 loo43 12587 
3.3e-3 3.5e-3 3.3e-3 

3762 16375 19387 
1.5e-3 9.8e-4 1.2e-3 
5128 22534 26722 

8.4e-4 6.le-4 l.le-3 
7668 33514 37345 

3 .Oe-4 3 .Oe-4 7.0e-4 
9775 42448 48410 

3.8e-5 1.2e-4 2.2e-4 
16288 71236 80063 
4.6e-6 3.4e-5 5.0e-5 
24767 110106 120370 
6.9e-7 3.9e-6 3.9e-6 

6447 15307 
1.2e-2 8.4e-3 
11627 25291 

1.2e-3 3.8e-3 
16719 40081 

6.5e-4 1.5e-3 
23279 55755 
3.le-4 7.9e-4 
33360 70683 
1.3e-4 4.9e-4 
42178 102884 
8.5e-5 2.3e-4 
69008 172186 

8.5e-6 4.7e-5 
104022 264799 
7.9e-7 7.7e-6 

608 M 
5.7e-3 & 

906 M 
4.8e-3 E 

1346 M 

9.6e-4 E 

1776 M 
4.2e-4 & 
2539 M 
1.8e-4 E 
3074 M 

4.5e-5 E 
5225 M 

8.0e-6 E 
7669 M 

5.6e-6 E 

Note. The molecules 1 through 10 are discussed in the text. 

the program, are reasonable. The relation between A and E same convergence characteristics. It is expressed by the 
is roughly, as intended fitted relation 

A = - ‘Olog E. 

In practice it is more important to know how the errors 
behave as a function of the number of points; this is shown 
in Fig. 8. Except the linear chain Cu,, (where performance 
is better as a result from it being essentially a two-dimen- 
sional integration), all tested molecules display roughly the 

M(A + 1) 
M-4) 

=*+&& 

which gives the factor of increase in the number of points 
that are necessary to gain one more significant digit. This 
means relatively slow convergence for low accuracies: a 
factor of 3 to pass from one to two digits. It improves for 
higher accuracies: a factor of 1.5 to go from five to six digits. 

error 

1o-8 
1 2 3 4 5 6 7 

A 
FIG. 7. Error vs. the accuracy parameter A, for a series of molecules. 
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10-l 
error 
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FIG. 8. Error vs. the number of integration points, for a series of molecules. 

Comparison with (pseudo-)random methods may put 
these figures in perspective. Monte Carlo has theoretically 
(from statistics) 

& MC=&-‘/2 

(5.3) 

The Diophantine method [18], which has been used in 
molecular as well as crystal DVM programs [ 19-211 claims 
an approximately linear convergence. So 

& D”M=CM-’ 

M;(:,” = 10. 
(5.4) 

It would be interesting to make a comparison with the 
elegant scheme proposed by Becke [22], which is, like ours, 
based on Gaussian integration. The convergence charac- 
teristics have not been examined in that paper in as much 
detail as we have done here. Our own findings with Becke’s 
method indicate that it uses slightly more points than ours 
for moderate accuracies (10e3); convergence to higher 
precision is much slower, in particular, for geometrically 
more complicated molecules. This may be due to the 
angular structure of the atomic weightfunctions [22]. We 
have not investigated the comparison systematically. 

CONCLUSION 

A Fortran program for numerical integration of both 
finite and infinite polyatomic systems has been presented 
and discussed. The scheme is based on a partitioning of 
the region of integration and subsequent application of 
Gaussian integration formulas, mostly of product type. The 
generated formulas are symmetric with respect to all sym- 
metry operators of the polyatomic system; the operators are 
computed automatically from the geometric data. The num- 
bers of points are optimized in each subregion, according to 
a prescribed accuracy defined in terms of a set of test func- 
tion integrals. Convergence of accuracy with the number of 
points is fast, as it typical for Gaussian type methods. 

Use of the program has been made easy: one needs to 
input only the atomic positions and the required general 
precision. At the other hand flexibility is retained since 
different accuracies can be imposed for the different main 
subregions (spheres, polyhedra, outer region). This is useful 
for special applications when the accuracy as defined in the 
program may not reflect the actual situation. Even some 
more technical parameters can by specified by the user, 
overruling the default determination by the program, for 
purposes of testing or for analysis of occurring integration 
problems. 

The package is available on request: an extensive descrip- 
tion with technical details of the implemented algorithms, 
serving as a user manual, is given in [23] and is available 
as well. 
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